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We present a theory for charge transport in organic crystals. A mobility expression is derived based on the
evaluation of the Kubo formula and the Holstein Hamiltonian. It covers the whole temperature range from low
T, where it reproduces an expression from the Boltzmann equation for band transport, via elevated T, where it
generalizes Holstein’s small-polaron theory to finite bandwidths, up to high T, for which a temperature depen-
dence equal to Marcus’ electron transfer theory is obtained. The general expression treats coherent band
transport and thermally induced hopping on equal footing. By avoiding the approximation of narrow polaron
bands the theory allows for the description of large and small polarons.
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I. INTRODUCTION

Driven by promising technological applications the scien-
tific interest in organic semiconductors is constantly grow-
ing. Despite many recent experiments,1–11 the theoretical in-
terpretation and understanding of several properties remains
incomplete. In particular, the charge transport in organic
semiconductors often displays very different behavior com-
pared to conventional inorganic semiconductors. Traditional
concepts such as band transport which are highly successful
in inorganic crystals might not be applicable directly to or-
ganic crystals.12,13 In contrast, new theoretical and computa-
tional methods are to be developed that go beyond simple
modifications of conventional approaches and account for
the distinct properties of charge carriers in organic materials
including their interactions with phonons. In particular, po-
laronic effects on charge transport are stronger in organic
semiconductors and cannot be treated as a perturbation. This
is due to the complexity of the molecular building blocks and
their vibrational degrees of freedom as well as the van der
Waals interaction between them. Specific intrinsic material
properties are best studied in ordered systems such as or-
ganic molecular crystals. The long-range order in such crys-
tals allows for a better understanding because it reduces
disorder-related anomalies which might bury important
structure-property relationships14 and chemical trends. The
reader is referred to a monograph15 and a recent review16 for
a more comprehensive overview.

One concept which is extensively used for transport in
organic materials is the polaron concept.17,18 It describes a
quasiparticle composed of a charge carrier and a lattice po-
larization cloud which is bound to this carrier. Thereby, the
size is an important measure to characterize polarons in
semiconducting organic molecular crystals since Holstein’s
small-polaron theory or extensions inspired by it are valid for
small polarons only.17,19–22 More precisely, they are restricted
to the narrow-band limit where the electronic coupling be-
tween neighboring molecules is sufficiently small and the
electron-phonon coupling plays a dominant role. In contrast,
conventional band theory as known from band transport in
inorganic semiconductors23 is applicable only if the electron-
phonon interaction is negligible �no polarons� or at least suf-

ficiently small �large polarons� compared to the electronic
coupling. Evidently, these two opposing limits, strong
electron-phonon coupling �such as in organic semiconduc-
tors� on the one hand and strong electronic coupling �such as
in the traditional inorganic semiconductors� on the other, fail
to cover the most interesting domain of organic semiconduc-
tors with strong electronic coupling. This is an important
reason for the incomplete understanding of charge transport
in organic crystals. Consequently the transport mechanism is
still under debate.12,15,16 The dilemma gets even more pro-
nounced in the light of the experiments conducted by Warta
and Karl.24 They have demonstrated that in the prototypical
naphthalene crystals the transport mechanism may actually
depend on the temperature T: band transport at low T and
hopping at high T. Moreover, the band transport at low tem-
peratures is not only observed for oligoacenes but it can also
be expected for similar crystals of �-conjugate molecules
with quite large electronic bandwidths exceeding 500
meV.11,25,26 In contrast to the bare electronic bandwidth, the
polaron bandwidth decreases with growing temperature and
becomes much smaller.27 Therefore, there is a common be-
lief that at high temperatures the polaron becomes localized
and is transported by hopping processes.

In the present work, we present a theoretical description
of charge transport in organic crystals that unifies the con-
cepts of conventional band theory and polaron hopping in a
natural way. We stress that our approach is qualitatively dif-
ferent to the theories based on Holstein’s small-polaron
model because it describes polarons of arbitrary sizes and,
hence, has an extended validity for all temperature. Not only
are small polarons included �the high-T limit corresponds to
previous narrow-band theories� but also large polarons and
even Bloch waves are described in the limit of small and
vanishing electron-phonon couplings, respectively. In order
to do this, it is not necessary to go beyond the Hamiltonian
applied previously. We also use the Holstein Hamiltonian but
we do not assume narrow bands as in the small-polaron mod-
els but, instead, take the full bandwidth into account. As a
consequence, a major finding of this work is that we recover
the results derived for band transport in inorganic semicon-
ductors �wide bands�. In particular, this removes an unphysi-
cal low-T singularity which is observed in many previous
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treatments19–22 and which occurs in the conventional treat-
ment of the Holstein model17 �which initially was not de-
signed for low T� due to the narrow-band approximation. In
a previous paper, we have shown that this leads to a signifi-
cantly better description of the hole mobilities in naphthalene
crystals.28 The goal of the present paper is to give a detailed
derivation of this theory including a comparison to previous
narrow-band approaches and numerical model studies to il-
lustrate the basic features.

The paper is organized as follows. After this introduction,
in Secs. II and III we present the derivation of the theoretical
description based upon the Kubo formalism applied to the
Holstein Hamiltonian. Hereby, special emphasis is put on the
polaron concept and its integration into the calculation of
charge-carrier mobilities. An explicit expression for the mo-
bility is given, and the separation into coherent and incoher-
ent transport contributions is discussed in detail. In Sec. IV,
we extend our analysis by the discussion of several limiting
cases which are included in the theory. Most importantly, we
recover the previous narrow-band result �Holstein model� at
high T and the conventional wide-band result �Boltzmann
equation� for the coherent part of the mobility. These find-
ings are further illustrated by numerical studies in Sec. V.
Finally a summary is given in Sec. VI.

II. THEORETICAL DESCRIPTION

A. Basic equations

The experimentally accessible dc mobility of the charge
carriers can be extracted from the theoretical quantity
current-current correlation function. They are connected by
means of the Kubo formula18

��� =
1

e0Nc

1

2kBT
�

−�

�

dt�j��t�j��0��H, �1�

which describes the linear current response of a system to an
applied electric field. Here, Nc is the number of charge car-
riers, kB is Boltzmann’s constant, and e0 is the elementary
charge. The mobility tensor ��� is measurable in time-of-
flight experiments or field-effect transistor setups where the
charges move on a macroscopic scale beyond their mean-free
paths. This corresponds to the validity range of the Kubo
formula.

In order to evaluate Eq. �1�, the current-current correlation
function has to be known for all times t. Hereby, the current
operator in Eq. �1� is derived from the polarization operator
P=e0�MRMaM

† aM according to

j =
dP

dt
=

1

i�
�P,H� , �2�

where the Hamiltonian of the system is the Holstein
Hamiltonian17

H = �
MN

�MNaM
† aN + �

Q
�	Q	bQ

† bQ +
1

2



+ �
MQ

�	QgMM
Q �bQ

† + b−Q�aM
† aM . �3�

The Hamiltonian, which neglects electron-electron interac-
tion, consists of an electronic part, a phononic part, and a
coupling term between electrons and phonons. The particle
annihilation �creation� operators aM

�†� are represented in real
space �site RM� and the phonon annihilation �creation� opera-
tors bQ

�†� are represented in reciprocal space �mode Q
��q ,
��. The electron transfer integrals �MN describe the
electronic coupling between orbitals at sites RM and RN, and
give rise to finite bandwidth and band dispersion in the pe-
riodic systems under study. The on-site energies �MM can be
set to zero according to the freedom of choosing an energy
zero. The lattice-vibration part of the Hamiltonian can be
assumed to be diagonalized with the frequencies 	Q
�	
�q� since phonon calculations and diagonalization of the
dynamical matrices are common tasks for modern ab initio
codes. The coupling term in Eq. �3� consists of particle and
phonon operators linked by the electron-phonon coupling
constants gMM

Q . These dimensionless quantities are written in
a mixed representation according to the definition of the op-
erators. Similar to the Holstein model, we take the local cou-
pling into account. The inclusion of additional nonlocal
electron-phonon interaction gMN

Q has not been considered in
the present framework in order to reduce the complexity of
the derivation. In addition to the phonon frequencies, the
material parameters �MN and gMM

Q may also be derived from
ab initio calculations �see, e.g., Refs. 29 and 27�.

From Eqs. �2� and �3� it follows that the current operator
j� ��=x ,y ,z� takes the form

j� =
e0

i�
�
MN

�RM� − RN���MNaM
† aN. �4�

In order to evaluate the Kubo formula in Eq. �1� the time
evolution of j has to be computed along with thermal aver-
ages defined through

�A�H =
Tr�e−�H/kBT�A�
Tr�e−�H/kBT��

. �5�

However, Hamiltonian �3� cannot be diagonalized exactly18

due to the interaction of particles and phonons and, thus,
inhibits a direct evaluation of the thermal average for the
current-current correlation function.

B. Polaron transformation

In order to proceed with the evaluation of the correlation
function in Eq. �1�, we change over to the polaron picture.
The canonical transformation

H̃ = eSHeS†
, �6�
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S = �
MQ

gMM
Q aM

† aM�bQ
† − b−Q� , �7�

which is also known as Lang-Firsov transformation results30

in the polaron Hamiltonian

H̃ = �
MN

aM
† ÊMNaN + �

Q
�	Q	bQ

† bQ +
1

2

 , �8�

where ÊMN=eCM�MNe−CN still contains phonon operators
through the quantities CM =�QgMM

Q �bQ
† −b−Q�. The same

transformation is made for the current operators j̃�

�eSj�eS†
. With the definition RMN��RM�−RN� one obtains

j̃� =
e0

i�
�
MN

eCMRMN��MNe−CNaM
† aN. �9�

The appearance of additional phonon operators through the
quantities CM reflects the dressing of the bare particles by
phonons. Using the transformed operators of Eqs. �8� and
�9�, the current-current correlation function in Eq. �1� may be
exactly rewritten into

�j��t�j��0��H = �eiHt/�j�e−iHt/�j��H = �eiH̃t/� j̃�e−iH̃t/� j̃��H̃.

�10�

C. Polaron concept

At this step it is important to include a brief discussion to
clarify some points that, although maybe trivial, appear to
get mixed up frequently. First, the polaron transformation as
carried out above is made for arbitrary coupling parameters
gMM

Q . Some authors make use of the term “small-polaron
transformation” which, in our eyes, is misleading since the
size of the polaron does not depend on the transformation
itself. Rather, it depends on the magnitude of the coupling
parameters gMM

Q . In fact, large polarons �small g� and even
fully delocalized Bloch electrons �g=0� are also covered by
the polaron transformation. In the latter case it trivially holds

that H̃=H. Therefore, the Holstein Hamiltonian and the po-
laron transformation are not a priori restricted to small po-
larons but allow for arbitrary sizes of polarons.

Second, in order to evaluate the Kubo formula �Eq. �1��
analytically, it is necessary to perform a thermal average
� . . . �H as defined in Eq. �5�, which requires the diagonaliza-
tion of H, i.e., a separation between electron and phonon
operators. However, the Holstein Hamiltonian H in its gen-
eral form �3� cannot be diagonalized exactly, and conse-
quently one has to proceed with an approximate diagonaliza-
tion of H. One idea is to find a hierarchy of energies in the
spirit of perturbation theory and neglect small terms. Such a
method requires a priori assumptions about coupling
strengths and, therefore, cannot be of general validity but
may give results for limiting cases such as the strong-
coupling regime �large g�. In this case the electron-phonon
interaction is assumed to be larger than the electronic cou-
pling and the latter quantity is treated as a perturbation. Al-
ternatively one considers the weak-coupling regime for small
g.

Such considerations, however, are not necessary after the
polaron transformation. While the polaron transformation
does not exactly diagonalize the Holstein Hamiltonian H �be-
cause electron and phonon operators are still coupled

through ÊMN which is a complicated function of phonon op-
erators�, the two contributions in transformed Hamiltonian
�8� can be regarded as a polaronic and a phononic one, which
indicates a better route toward decoupling. The advantage of
this approach over the separation between electrons and
phonons in H is obvious. A separation between polarons �of

arbitrary size� and phonons in H̃ is possible without the re-
striction to either weak-coupling or strong-coupling regime

by the replacement of the operator ÊMN by its thermal aver-
age over the phononic part of Eq. �3� �̃MN. This approach
includes the band narrowing and, hence, the variation in the
polaron size with temperature. The introduction of the po-

larons by replacing ÊMN→ �̃MN has been considered and dis-
cussed in previous work18,31 and results in the approximate
polaron Hamiltonian

H̃ = �
MN

aM
† �̃MNaN + �

Q
�	Q	bQ

† bQ +
1

2

 , �11�

which is used henceforth.
The great merit of the polaron transformation is seen from

identity �10� which suggests using an approximate diagonal-

ized H̃, which includes the polaron effects, i.e., the coupling
constants gMM

Q in all orders, instead of an approximate diago-
nalized H. In combination with the exact expression �9� for

the current operators j̃, the approximate diagonalization of H̃
on top of the polaron transformation is a very general way to
account for arbitrary electron-phonon coupling strength as
pointed out previously.31 The new quantities �̃MN are the po-
laron transfer integrals

�̃MN = �MN exp�− �
Q
	1

2
+ NQ
gMM

Q − gNN
Q 2� , �12�

which depend on the electron transfer integrals �MN, the cou-
pling of the electrons to all phonon modes Q, and the occu-
pation numbers of the phonons NQ, or in other words, on the
temperature T. Thereby, NQ is the occupation number ac-
cording to the Bose-Einstein statistics NQ= �exp�

�	Q

kBT �−1�−1.
The polaronic character of �̃MN reduces the bare transfer in-
tegrals �MN according to Eq. �12� and leads to the effect
known as band narrowing. The renormalization of the trans-
fer integrals can be rephrased in terms of the temperature-
dependent polaron effective mass which is increased by the
inverse of the exponential factor in Eq. �12�. Equation �12�
indicates two contributions to the lowering of the electronic
coupling. The first temperature-independent contribution is
due to zero-point vibration effects. The second one enters for
finite T. Its temperature dependence is due to the phonon
occupation NQ and, hence, increases with rising T. The
strength of the narrowing is governed by the magnitude of
the electron-phonon coupling constants gMM

Q .
We note that for the noninteracting case g�0 the bare

quantities �MN are retained and the Hamiltonian H̃ of Eq.
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�11� coincides with the starting Hamiltonian H in Eq. �3�. In
this limiting case, the effective mass becomes the bare effec-
tive mass as obtained from band-structure calculations.

D. Time evolution

We proceed by inserting Eq. �9� into Eq. �10� and obtain

�j��t�j��0��H = 	 e0

i�

2

�
KLMN

�eiH̃t/�eCKRKL��KL

�e−CLaK
† aLe−iH̃t/�eCMRMN��MNe−CNaM

† aN�H̃

= 	 e0

i�

2

�
KLMN

RKL��KLRMN��MN�eCK�t�e−CL�t�

�eCMe−CN�H̃�eiH̃t/�aK
† aLe−iH̃t/�aM

† aN�H̃. �13�

The second step makes use of the decoupling of polarons and
phonons in polaron Hamiltonian �11�, and introduces the
time evolution of the phonon part via the quantities

CM�t� = �
Q

gMM
Q �bQ

† ei	Qt − b−Qe−i	Qt� . �14�

The time evolution of the electron operators could be eas-

ily computed if the Hamiltonian H̃ would be diagonal also in
the operators a and a†, i.e., if the off-diagonal elements �̃MN
would vanish. According to Eq. �12�, this is the case for high
enough temperatures because of the narrowing of the band.
In this case one could simply set

H̃ → H̃� = �
M

�̃MMaM
† aM + �

Q
�	Q	bQ

† bQ +
1

2

 . �15�

In the general case, however, Eq. �15� is an approximation
which neglects the bandwidth completely. The Hamiltonian
in Eq. �15� is identified with the so-called narrow-band ap-
proximation which has been used by many authors in the
past.17,20,22 For strong electron-phonon coupling it gives rea-
sonable results for elevated temperatures but fails completely
in the T→0 limit where it suffers from an unphysical 1 /T
divergence for the mobility. The failure gets even worse if
the electron-phonon coupling is not too strong since the
narrow-band case is then only fulfilled for extremely high T.

In this paper we follow another route to evaluate Eq. �13�
which avoids the narrow-band approximation. The central
idea is to take the full bandwidth into account which vastly
extends the validity range of the final result. The exact di-

agonalization of the polaronic part of the Hamiltonian H̃ in
Eq. �11� is performed in reciprocal space. We introduce
k-space electron creation operators ak

† and substitute

aM
† =� 1

N�
�
k

eikRMak
† , �16�

where the sum runs over all wave vectors in the Brillouin
zone and N� is the number of unit cells. With the polaron
band energies in reciprocal space

�̃�k� = �
N

�̃0Ne−ikRN, �17�

polaron Hamiltonian �11� becomes diagonal in this represen-
tation

H̃ = �
k

�̃kak
†ak + �

Q
�	Q	bQ

† bQ +
1

2

 . �18�

As a consequence, the time evolution of the electron opera-
tors can then easily be computed with the polaron band en-
ergy �̃�k� according to

e�it/��H̃ak
†e−�it/��H̃ = ak

†e�it/���̃�k�, �19�

and Eq. �13� becomes

�j��t�j��0��H = − 	 e0

�

2

�
KLMN

1

N�
2 �

k1k2k3k4

eik1RKe−ik2RL

�eik3RMe−ik4RNe�it/���̃�k1�e−�it/���̃�k2�

��ak1

† ak2
ak3

† ak4
�H̃RKL��KLRMN��MN

��eCK�t�e−CL�t�eCMe−CN�H̃. �20�

E. Thermal average

Another great advantage of the decoupling of polarons
and phonons in polaron Hamiltonian �11� is that electron and
phonon operators are fully separated in correlation function
�20�. For the electron operators, we may calculate the ther-
mal average immediately according to Wick’s theorem

�ak1

† ak2
ak3

† ak4
�H̃ = k1

k2k3

k4nk1
nk3

+ k1

k4k3

k2nk1
�1 − nk2

� ,

�21�

where the Fermi-Dirac distribution

nk = 	exp� �̃�k� − �

kBT
� + 1
−1

, �22�

with the chemical potential �=��T ,Nc� has been introduced.
The two terms on the right-hand side of Eq. �21� are not

of equal importance. The n2 term describes density correla-
tions and does usually not contribute to the transport. In any
case it is much smaller than the n�1−n� term if one considers
low concentration. Without the n2 term one obtains

�j��t�j��0��H = − 	 e0

�

2

�
KLMN

1

N�
2 �

k1k2

eik1�RK−RN�eik2�RM−RL�

�e�it/����̃�k1�−�̃�k2��RKL��KLRMN��MNnk1

��1 − nk2
��eCK�t�e−CL�t�eCMe−CN�H̃. �23�

We still have to evaluate the thermal average over the pho-
non degrees of freedom. This is much more complicated but
can be performed exactly. Here we only describe the major
technical steps. One essentially has to calculate the expecta-
tion value of products of phonon operators of the type

�BQ1
�t�BQ2

�t� . . . BQl
�t�BQ1�

�0�BQ2�
�0� . . . BQj�

�0��H̃, �24�

where
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BQ�t� = bQ
† ei	Qt − b−Qe−i	−Qt. �25�

Since the phonons are interaction-free we make use of the
Wick theorem reducing Eq. �24� to all pairwise contractions.
Letting r be the number of pairwise contractions with B op-
erators at different times, we can write for the first term with
0�r�min�l , j�

�BQ1
�t�BQ1�

�0��H̃�BQ2
�t�BQ2�

�0��H̃ . . . �BQr
�t�BQr�

�0��H̃

��BQr+1
�t�BQr+2

�t��H̃ . . . �BQl−1
�t�BQl

�t��H̃

��BQr+1� �0�BQr+2� �0��H̃ . . . �BQj−1� �0�BQj�
�0��H̃. �26�

Such a complete contraction of Eq. �24� is only nonzero if
l−r and j−r are even, and can be evaluated from the thermal
averages �BQ�t�BQ��0��H̃=−Q,−Q��Q�t�, where

�Q�t� = NQei	Qt + �1 + NQ�e−i	Qt. �27�

Summing up over all possible contractions in all orders, the
phonon part of the thermal average in Eq. �23� can be con-
densed into the form

�eCK�t�e−CL�t�eCMe−CN�H̃ = exp�−
1

2�
Q

�Q�0�GKLKL
Q �

�exp�−
1

2�
Q

�Q�0�GMNMN
Q �

�exp�− �
Q

�Q�t�GKLMN
Q � , �28�

where the abbreviation

GKLMN
Q = �gKK

Q − gLL
Q ��gMM

−Q − gNN
−Q� �29�

has been introduced. Note that the first two exponential fac-
tors in Eq. �28� are of equal quality. They give rise to the
bandwidth narrowing known already from Eq. �12� and re-
duce the mobility. In contrast, the third exponential factor
can amplify the mobility, and explicitly describes phonon
absorption and emission events as will be demonstrated later
in the paper.

Finally, we collect the above findings, and insert Eqs. �23�
and �28� into expression �1� for the mobility tensor. Introduc-
ing the short hand notation �̃N� �̃0N for the polaron transfer
integrals, changing summation indices, and summing up over
the real-space index K, we obtain

��� = −
1

e0Nc2kBT
	 e0

�

2

�
LMN

RL��̃LRN��̃N
1

N�

� �
k1k2

e−ik1�RM+RN�eik2�RM−RL�nk1
�1 − nk2

�

��
−�

�

dte�it/����̃�k1�−�̃�k2��

�exp�− ��
Q

�Q�t�G0L0N
Q e−iQRM�� , �30�

which is the primary result for the carrier mobility of the
present derivation. It includes coherent band transport and
incoherent hopping as will be demonstrated in the following.

Importantly, the general form of Eq. �30� allows for the ap-
plication to arbitrary phonon modes 	Q and arbitrary matrix
elements gMM

Q of the electron-phonon coupling.

III. CONTRIBUTIONS TO THE MOBILITY

A. Coherent processes

We proceed in order to extract the essential physics and
discuss Eq. �30� in terms of contributing scattering events.
This is most intuitive if we first split off the zeroth order of
electron-phonon interaction in the third line of Eq. �30� ac-
cording to

exp�− �
Q

�Q�t�G0L0N
Q e−iQRM�

= 1 + �exp�− �
Q

�Q�t�G0L0N
Q e−iQRM� − 1� . �31�

In terms of physics we separate coherent transport �no pho-
non scattering� from incoherent transport �scattering by
phonons�. This leads to

��� = ���
�coh� + ���

�inc�. �32�

The coherent contribution to the mobility is given as

���
�coh� = −

e0

2NckBT�2 �
LMN

RL��̃LRN��̃N
1

N�

� �
k1k2

e−ik1�RM+RN�eik2�RM−RL�nk1
�1 − nk2

�

��
−�

�

dte�it/����̃�k1�−�̃�k2��. �33�

Mobility expression �33� can be interpreted in terms of
contributing scattering events from some initial states k1 into
final states k2. The sum over k1 and k2 in Eq. �33� includes
all such events according to the probability nk1

that an initial
state is occupied times the probability �1−nk2

� of the final
state being empty �Pauli blocking factor�. From the time in-
tegration in Eq. �33� it becomes obvious that the energy of
the initial polaron �̃�k1� has to match the energy of the final
polaron �̃�k2� �energy conservation�. Moreover, considering
the real-space sum over the index M which only occurs in
the exponentials gives a Kronecker delta in the wave vectors
of initial and scattered polaron k1,k2

�momentum conserva-
tion�. The momentum conservation �cf. Fig. 1�a�� in the po-

FIG. 1. �Color online� �a� Typical coherent and ��b� and �c��
incoherent processes involved in carrier transport. In �c� a third
order process �one emitted and two absorbed phonons� with a re-
sulting phonon wave vector q=q1+q2−q3 is displayed
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laron wave vectors in ��coh� reflects the coherence aspect of
band transport, i.e., the moving particle does not loose its
phase coherence and its momentum relaxation length is infi-
nite. From the momentum conservation it follows that
�̃�k1�= �̃�k2� is immediately fulfilled and the mobility ��coh�

becomes infinite, as expected for coherent transport without
any scattering mechanism. In real crystals, the coherence can
be reduced by other scattering mechanism beyond our model
of electron-phonon interaction �impurities, disorder, electron-
electron scattering, etc.�. Such processes may be accounted
for by the introduction of a disorder parameter �, which re-
duces the polaron lifetime, as in the literature �see, e.g., Ref.
22�. Therefore, we introduce a limiting scattering time from
static disorder and describe it by a Gaussian distribution

� dt →� dte−�t/��2
. �34�

The broadening limits the coherence time to �. The corre-
sponding energy can be regarded as a static disorder param-
eter which mimics different on-site energies, for example.

The resulting mobility can be written as

���
�coh� =

��e0�

2NckBT
�
k1

nk1
�1 − nk1

�ṽ��k1�ṽ��k1� , �35�

where the polaron band velocity

ṽ��k� =
1

�

� �̃�k�
�k�

�36�

has been introduced. The fact that the band velocity appears
explicitly in Eq. �35� reflects the underlying coherent char-
acter of this transport contribution. The tilde reminds us that
this quantity is of polaronic nature and therefore temperature
dependent because it is affected by the band narrowing de-
scribed in Eq. �12�. Apart from the tildes, Eq. �35� is a well-
known expression that may also be derived from the Boltz-
mann transport equation.23 However, an essential difference
is that expression �35� is now generalized to the transport of
polarons instead of bare electrons. In Sec. IV D we discuss
the limit of small electron-phonon coupling where the po-
larons reduce to the bare particles and the expression from
the Boltzmann transport equation is recovered.

Finally, we give another form of the result for the coher-
ent part of the mobility. If the squared velocity ṽ�

2�k� is writ-
ten as ṽ�

2��̃�k�� one can further introduce the polaron density
of states �DOS�

D��̃� = �
k

��̃ − �̃�k�� , �37�

and write the diagonal elements of the mobility tensor as

��
�coh� =

��e0�

2NckBT
�

0

�

d�̃D��̃�n�̃�1 − n�̃�ṽ�
2��̃� . �38�

Again, Eq. �38� is also similar to a well-known textbook
formula for a constant relaxation time32 with the generaliza-
tion from electrons to polarons.

B. Incoherent processes

The remaining contribution to the total mobility is due to
incoherent-scattering events and reads

���
�inc� = −

1

e0Nc2kBT
	 e0

�

2

�
LMN

RL��̃LRN��̃N
1

N�

� �
k1k2

e−ik1�RM+RN�eik2�RM−RL�nk1

��1 − nk2
��

−�

�

dte�it/����̃�k1�−�̃�k2��

�	exp�− ��
Q

�Q�t�G0L0N
Q e−iQRM�� − 1
 . �39�

Similarly to the preceding paragraph we briefly discuss the
scattering events that contribute to the incoherent part of the
mobility. First, in Eq. �39� the real-space sum over M leads
to the momentum conservation k1+q,k2

with phonon wave
vectors. Hereby, q represents the sum over all phonon vec-
tors which contribute in one scattering process of a certain
order of the coupling constants. According to the exponential
sum in Eq. �39� this may involve any number of phonons
because all orders of electron-phonon interaction contribute.
In Fig. 1 incoherent processes of first and third orders are
depicted in �b� and �c�, respectively. Only in the first order
does q represent the wave vector of a single phonon which
scatters the polaron �see also Sec. IV D�. Also, the energy
conservation is somewhat more complicated compared to the
coherent mobility. The energy difference of initial and final
polarons is no longer zero as for the coherent part but must
account for the phonon energies of created and annihilated
vibrations. This is automatically guaranteed via the time in-
tegration in Eq. �39�. Finally, the weight of such a scattering
event is influenced by the occupation numbers nk1

�1−nk2
� as

observed similarly for the coherent contribution. Such
incoherent-scattering processes are to be regarded as stochas-
tic processes since the phonon fluctuations are statistically
independent. In this way the phase coherence of the particles
is destroyed in each scattering event.

If there is no electron-phonon coupling at all, the incoher-
ent contribution completely vanishes. In contrast thereto, a
nonzero electron-phonon interaction influences the incoher-
ent contribution through two counteracting effects. The in-
creasing polaron mass with increasing g tends to reduce the
mobility. On the other hand, the stronger the electron-phonon
coupling the stronger can temperature promote charge trans-
port.

Expression �39� can be simplified if one assumes that the
scatterers are dispersionless optical phonons �	Q→	
 ,NQ
→N
�, which implies that �Q�t�→�
�t�, where

�
�t� = N
ei	
t + �1 + N
�e−i	
t, �40�

and if one, accordingly, sets

gMM
Q =

g


�N�

eiqRM . �41�

As a result one obtains

ORTMANN, BECHSTEDT, AND HANNEWALD PHYSICAL REVIEW B 79, 235206 �2009�

235206-6



���
�inc� = −

1

e0Nc2kBT
	 e0

�

2

�
LMN

RL��̃LRN��̃N
1

N�

� �
k1k2

e−ik1�RM+RN�eik2�RM−RL�nk1

��1 − nk2
��

−�

�

dte�it/����̃�k1�−�̃�k2��

��exp�− �0
M − L

M − −N
M + L−N

M ��



�
�t�g

2� − 1� .

�42�

In order to further simplify the expression, one may concen-
trate on the most important terms in expression �42�. These
terms are identified from the minimization of 0

M −L
M −−N

M

+L−N
M in the last exponential. The leading terms are obtained

for L=M and −N=M. It is confirmed numerically that con-
tributions from all other terms are minor. Taking only the
leading terms into account one finds

���
�inc� =

e0

Nc�
22kBT

�
L

RL�RL��̃L
2 1

N�

� �
k1k2

nk1
�1 − nk2

��
−�

�

dte�it/����̃�k1�−�̃�k2��

��exp�2�



�
�t�g

2� − 1�e−�t/��2

. �43�

For consistency we have again replaced the time integral
according to Eq. �34� introducing the same collision time �
from defect scattering as a disorder parameter. In contrast to
the coherent contribution, where the introduction of band
velocity �36� was possible, reflecting the delocalization as-
pect of coherent transport, here the quantity 1

�2 �LRL�RL��̃L
2

reflects the localization aspect of incoherent transport. This
quantity can be looked upon as a measure for the polaron
hopping in real space since it is dominated by the nearest-
neighbor transfer rates.

IV. LIMITING CASES

A. Narrow-band approximation

In the preceding chapter we have evaluated the mobility
from the Kubo formula �Eq. �1��, and obtained an analytical
expression �Eq. �30�� which includes coherent and incoher-
ent contributions for arbitrary values of the electron-phonon
coupling strength and arbitrary bandwidth. The mobility in
Eq. �30� is a generalization of the results of Holstein’s small-
polaron model because it can also describe the motion of
large polarons �small g� and covers even the case of Bloch
waves �g=0�. This was possible because we have avoided
the narrow-band approximation, and, instead, incorporated
the full bandwidth by means of a mixed real-space and
reciprocal-space representation for the electronic and vi-
bronic degrees of freedom. Both contributing transport
mechanisms, coherent and incoherent, coexist and have been
split for separate discussions. The simplified expressions are
given by Eqs. �35� and �43�, respectively.

The narrow-band approximation follows from the most
general result �Eq. �30�� by setting �̃�k1�= �̃�k2� for all wave
vectors and assuming, accordingly, a constant distribution
function nk→c�Nc /N� as well. Subsequent summations
over the wave vectors k1 and k2 transform the phase factors
to Kronecker deltas in real space. With Eqs. �34�, �40�, and
�41� one finally obtains for Einstein phonons

���
�NBA� =

e0�1 − c�
2�2kBT

�
L

RL�RL��̃L
2�

−�

�

dt

�exp�2�



�
�t�g

2�e−�t/��2

. �44�

This result is the narrow-band result as derived previously
for the case of local electron-phonon coupling.18,22

The mobility in the narrow-band approximation �Eq. �44��
may also be split into coherent and incoherent parts using the
separation exp�2�
�
�t�g


2�=1+ �exp�2�
�
�t�g

2�−1�, in

the spirit of Eq. �31�. This is similar to Holstein’s original
idea of a mobility summation �=��1�+��2� reflecting coher-
ent tunneling and hopping motions, respectively.17 Such a
separation also occurs in later theoretical work.16,27,33 How-
ever, in view of the assumed localized nature of the polarons
it had not been discussed that ��1� should be related to the
band transport as obtained from the Boltzmann equation.
This is not surprising since the resulting formulas and nu-
merical results for ��1� differ strongly from the coherent mo-
bility ��coh�, Eq. �35�, of the present theory that goes beyond
the narrow-band limit �see also Sec. V�. Consequently, the
characteristics of the contribution ��1� from such localized
quasiparticles in the narrow-band theories appear quite
strange. One common flaw is the presence of a low-
temperature singularity T−1 which does not occur in band
transport �see Sec. IV B�. This demonstrates that, due to the
approximate treatment of the carrier occupation, the narrow-
band theories are not valid at lower T, as also previously
discussed by Kenkre.34

In general, there are two main differences between the
present theory and a narrow-band theory. First, in the present
approach, there are additional scattering channels from in-
elastic scattering ��̃�k1�� �̃�k2��, whereas a narrow-band
theory takes only elastic scattering into account where the
energy difference for initial and final polaron states is always
zero ��̃�k1�= �̃�k2��. Second, the channels which were al-
ready included in a narrow-band theory are now much better
described since the actual state energy �̃ has become a rel-
evant quantity and is incorporated properly. The narrow-band
approximation partially neglects the energy dispersion which
immediately leads to the incorrect matching of initial and
final-state energies.

It is clear that for high enough temperatures the above
replacements, which have been introduced to arrive at the
narrow-band result, become exact and the full theory coin-
cides with the narrow-band theory. In contrast, for low and
medium temperatures we observe strong improvements over
the narrow-band approximation. This will be further dis-
cussed below and accompanied by numerical studies in Sec.
V.

THEORY OF CHARGE TRANSPORT IN ORGANIC… PHYSICAL REVIEW B 79, 235206 �2009�

235206-7



B. Low temperatures

In order to calculate the T→0 limit of the coherent con-
tribution �Eq. �35�� we make use of the relation nk�1−nk�=
−kBT

�n�̃�k�

��̃�k� . From the Fermi-Dirac distribution at zero tem-
perature �step function� and its energy derivative, it follows
that only the polarons at the chemical potential � contribute.
The number of contributing polarons from the small energy
interval around the chemical potential �thermal layer� de-
creases in the low-T limit according to the layer width kBT.
As a consequence, the kBT term exactly cancels the prefactor

1
kBT in Eq. �35� resulting in a finite carrier mobility for T=0.
Importantly, this is a major improvement over the narrow-
band approximation which involves a replacement nk�1
−nk�→c�1−c� and results in a 1

kBT divergence. Therefore, the
correct inclusion of the Fermi-Dirac statistics in the present
theory is essential for the removal of this unphysical singu-
larity and constitutes a major advantage of the present theory
over the previous narrow-band approach.

In the special case of an isotropic system with a parabolic
band structure, we obtain the low-T limit as

��coh� =
��e0�

2mpol
� , �45�

which resembles the Drude expression for the mobility gen-
eralized to polarons as charge carriers. Thereby, the polaron
effective mass is given by

mpol
� = mel/hole

� exp	�



g

2
 , �46�

thus, the dressed particle has an enhanced mass with respect
to the bare electron/hole due to coupling to the phonons. The
occurring exponential factor is the inverse of the factor
which occurs for the bandwidth in the T→0 limit for Ein-
stein phonons �see, e.g., Eq. �12��.

The low-T regime of the incoherent mobility ��inc� from
Eq. �43� is obtained for a single scatterer 
 of frequency 	


in the limit of a small phonon occupation number �N
�1�.
Assuming ultrapure crystals where static disorder is much
smaller than phonon induced dynamic disorder, i.e., 1 /�
�	
, we find the leading term

��inc� � g

2 N


T
�

g

2

T
e−��	
/kBT�. �47�

Basically, this result describes an activation law with the
phonon energy as a relevant energy barrier. The process be-
hind this leading term is a phonon absorption process, which
elevates the polaron above the Fermi energy. The frequency
of occurrence of such an event is proportional to N
, the
number of available phonons, and the activation law should
rather be regarded as a probability than a real barrier. Finally,
the T→0 limit of Eq. �47� is readily obtained as

��inc� → 0, �48�

i.e., the incoherent mobility vanishes.

C. High temperatures

For increasing temperature the effective polaron mass
strongly increases which is a direct consequence of the band
narrowing. Accordingly, we find for the T→� limit that the
coherent mobility behaves like

��coh� → 0. �49�

For the remaining incoherent contribution, the distribution
function for polarons in Eq. �43� becomes constant, nk→c, if
the temperature is high enough that the bandwidth becomes
much smaller than kBT. If in addition the bandwidth is
smaller than all relevant phonon energies, the narrow-band
limit applies and we can set �̃�k1�= �̃�k2� in Eq. �43� and
obtain

���
�inc� →

e0�1 − c�
2�2kBT

�
L

RL�RL��̃L
2�

−�

�

dt

��exp�2�



�
�t�g

2� − 1�e−�t/��2

. �50�

For sufficiently large temperatures �2N
g

2 �1�, the −1 term

in the parenthesis is negligibly small and the right-hand side
of Eq. �50� equals the narrow-band result from Eq. �44�. In
fact, Eq. �50� corresponds to the hopping term ��2� in Hol-
stein’s original narrow-band theory �see our discussion of
Eq. �44� in Sec. IV A�.

It has been shown in Ref. 22 that in this limiting case, the
high-T mobility for a single scatterer 
 of frequency 	
 be-
haves like

��inc� � T−3/2e−�Epol/kBT�, �51�

where Epol=
1
2g


2�	
 is the polaron binding energy. Since the
coherent contribution ��coh� vanishes for high T, it follows
that this activation law also holds for the total mobility � in
the present theory. Considering the relation of the mobility to
the electron transfer rate �ET according to ��

�ET

T ,16 Eq. �51�
has the exact same temperature dependence as obtained in
Marcus’ electron transfer theory.35 In the Marcus theory, the
polaron binding energy Ep is regarded a barrier for the
charge carrier between two states of localization on different
sites �initial and final states for the charge-transfer process�.
Note that beyond the maximum of ��T� in Eq. �51� �kBT
�

2
3Ep�, the mobility is a decreasing function of T while for

lower temperatures �kBT�
2
3Ep� one finds an activation be-

havior giving larger � for larger T.
Comparing the high-T limit in Eq. �51� to the low-T limit

of the incoherent hopping contribution in Eq. �47�, there are
differences in the T dependence of the prefactor as well as in
the activation energy in the exponential. While at low T the
leading term arises from a single phonon-scattering event
��g


2� and is directly related to the number of available
phonons N
, the high-T limit is caused by the electron-
phonon coupling in all orders �since the coupling constant g


appears in the exponent in Eq. �51�� and is not easily related
to phonon occupation numbers.
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D. Small electron-phonon coupling

As an important limiting case, the present theory covers
the bare electron limit if one reduces the electron-phonon
coupling g→0 and hence retains the bare electronic band
velocity

ṽ��k� → v��k� =
1

�

���k�
�k�

. �52�

Accordingly, Eqs. �35� and �38� reduce to

���
�coh� =

��e0�

2NckBT
�
k1

nk1
�1 − nk1

�v��k1�v��k1� , �53�

and

��
�coh� =

��e0�

2NckBT
�

0

�

d�D���n��1 − n��v�
2��� , �54�

respectively, where D��� is the ordinary electronic DOS, and
nk and n� are taken at the bare electronic structure.

Incoherent transport only contributes for finite electron-
phonon interaction. For g�0, the electron-phonon coupling
in the term �exp�2�
�
�t�g


2�−1� of Eq. �43� enables scat-
tering and thus opens transport channels involving the cre-
ation or removal of phonons. For small g we replace
�exp�2�
�
�t�g


2�−1�→2�
�
�t�g

2 in Eq. �43� and the time

integration, in the limit �→�, gives rise to delta functions in
energy which, for a single scatterer, read

1

�
�

−�

�

dt�N
e�it/����̃�k1�−�̃�k2�+�	
�

+ �1 + N
�e�it/����̃�k1�−�̃�k2�−�	
��
= N
��̃�k1� − �̃�k2� + �	
�

+ �1 + N
���̃�k1� − �̃�k2� − �	
� . �55�

From this equation we directly identify both phonon absorp-
tion ��N
� and emission ��1+N
� processes with the respec-
tive energies ��	
 that govern the incoherent mobility in
the limit of small electron-phonon interaction.

V. NUMERICAL SIMULATIONS

In order to illustrate the difference in the theory with and
without narrow-band approximation, and to demonstrate the
unique features of the present approach, we supplement our
theoretical analysis by some numerical studies. We use an
orthorhombic model crystal with a coupling constant g
=1, a
bandwidth of 680 meV which arises from transfer integrals
�a=100 meV, �b=50 meV, and �c=20 meV to the nearest
neighbors in the three Cartesian directions. The phonon en-
ergy for a single scatterer is chosen �	
=10 meV. The lat-
tice constants are a=4 Å, b=5 Å, and c=7 Å. These are
considered typical parameters for organic molecular crystals
and we use only a single scatterer to simplify the discussion.
All calculations were performed with � /�=0.1 meV repre-
senting an ultrapure crystal.

Figure 2 displays the results for the charge-carrier mobil-
ity of the model crystal. The results are plotted for the three
Cartesian directions. The observed anisotropy reflects the
different lattice vectors and transfer integrals used. For each
direction the separation into coherent and incoherent contri-
butions exhibits that the coherent band transport strongly de-
creases. The hopping contribution shows an activation be-
havior with rising temperature. Both terms are equal at
approximately 160 K and hopping becomes dominant at
higher T. Above 250 K the band transport is reduced to a
negligible contribution to the total mobility of the model
crystal. As a result of the strong decrease in the coherent
mobility contribution and the increase in the incoherent con-
tribution, the transition is quite sharp which explains the dif-
ficulties of the consistent descriptions within previous theo-
ries for one or the other limit.

From the comparison to the narrow-band theory �dashed
curves in inset of Fig. 2�, we observe that the mobilities in
the present approach are lower than the mobilities from the
narrow-band theory. In general, both coherent and incoherent
mobilities are reduced. At first glance, this result seems to be
surprising since the full theory includes both elastic and in-
elastic elementary processes, whereas the narrow-band
theory only accounts for the elastic scattering �see Sec.
IV A�. This finding in Fig. 2 may be explained by the im-
proved description of the respective scattering events which
contribute to the mobility in Eq. �30�. In the narrow-band
theory, the partial neglect of finite bandwidth effects results
in an overestimation of the mobility because the energy con-
servation ��̃1= �̃2� is erroneously taken as fulfilled for all
transitions. For finite bandwidth the scattering states are dis-
tributed over a broader energy range than in the narrow-band
case where all energies are assumed to be equal. In total, this
leads to stronger energy mismatch between initial and final
scattering states. Applying the correct treatment of energy
conservation, such pairs of states with different energies no

FIG. 2. Hopping mobility ��inc� �light gray�, band mobility
��coh� �dark gray�, and total mobility �black� of a model crystal.
Different directions are plotted: a, b, and c in order of decreasing
mobility. Inset: solid lines represent the present theory �a axis only�.
Dashed lines show the respective results using the narrow-band
approximation.
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longer contribute which leads to a noticeable reduction in the
mobility. In the present theory, such a correct description of
the energies of initial and final states removes the deficiency
from the narrow-band theory.

We also observe a mobility dip at around 250 K. As seen
in the inset of Fig. 2, this is traced back to the incoherent
contribution. The dip is not present in the narrow-band
theory because its physical origin can only be described
within the full theory. This is briefly discussed. Starting from
the high-T regime with vanishing bandwidth, the bandwidth
increases with decreasing temperature. Similar to the above
discussion, the reduction in the incoherent mobility with de-
creasing T is caused by stronger energy mismatch between
initial and final states. Below 250 K the incoherent mobility
increases again. This is explained by further widening of the
bandwidth which enables additional scattering channels �in-
elastic scattering� once the energy difference �̃�k1�− �̃�k2�
exceeds the phonon energy �	
. The strongest increase in
the mobility is observed at about 200 K which corresponds
nicely to a polaron bandwidth of 10 meV. Only below 200 K
is this channel for the creation/destruction of phonons with
frequency �	
=10 meV open and results in higher mobili-
ties.

Another important result is visible in the low-temperature
limit of the mobility. While for the narrow-band theory this
limit gives an infinite mobility ���1 /T, see inset of Fig. 2�
even if a finite value for � is chosen, the unphysical low-T
singularity is removed in the new approach. This is achieved
by taking into account the correct Fermi-Dirac statistics for
the particles in the present theory, as discussed in Sec. IV B.
As a result, the full theory leads to distinct mobility plateaus
for T�30 K, which are also observed in experiments on
high-quality organic crystals.24

Finally, in order to demonstrate the influence of the
strength of electron-phonon scattering we varied the cou-
pling parameter g
. Figure 3 shows the results for the model
crystal with g
� �0.5,1.0,1.5,2.0�. Although the coupling
constant is not changed drastically we obtain curves with
seemingly different features. While for g
=0.5 the mobility
decreases with rising temperature, which is explained by the
nearly exclusive contribution of coherent transport up to sev-
eral hundreds of kelvin, the other curves show both decreas-
ing and increasing total mobilities. This is caused by the
band transport-to-hopping transition which shifts to lower
temperatures for larger g. This shift can be explained by the
reduction in the band transport and promotion of the phonon-
assisted hopping with larger g, and is therefore a conse-
quence of the relative size of both contributions. The g de-
pendence for low temperatures is given by Eqs. �45� and
�46�. For the used values of g we find a modification of the
mobilities over nearly two orders of magnitude. The varia-
tion is less strong for higher temperatures which can be un-
derstood from the compensating effect of the hopping con-
tribution which counteracts the bandwidth narrowing.

VI. SUMMARY

In summary, we have presented the derivation of a charge
transport theory based on a nonperturbative evaluation of the

Kubo formula for the carrier mobility which shows several
improvements over previous theories. We have been able to
overcome the narrow-band approximation commonly used in
small-polaron theories and have taken the full bandwidth
into account. This extends the validity of the present theory
to large polarons and even Bloch waves �which do not
couple to the lattice vibrations� as well. The generalization
was possible within a mixed real-space and reciprocal-space
representation. The discussion of limiting cases has been
used to gain additional insight into the theory. In particular,
the connection to the results from the Boltzmann equation
for low T and the equivalence in the T dependence to the
Marcus theory for high T has been demonstrated.

It was found that the mobility can be understood in terms
of contributing scattering events, where the inclusion of the
full bandwidth allows to take also inelastic-scattering pro-
cesses into account. The analysis of these scattering events
showed that energy and momentum conservation are inher-
ently fulfilled. This analysis led further to the identification
of coherent and incoherent contributions to the mobility.
While the former shows always a decreasing temperature
dependence, the latter is thermally activated for not too high
T and a sharp transition between both is observed. Their
relative magnitudes, which strongly depends on the strength
of the electron-phonon coupling, governs the temperature de-
pendence of the total mobility. The unphysical T−1 singular-
ity of narrow-band theories has been removed.

For illustration, we have performed numerical studies on
a model crystal. From the comparison of the mobility curves
between the present theory and the narrow-band theory the
above-mentioned improvements have been demonstrated. In
particular the study of the influence of the strength of
electron-phonon coupling on the temperature dependence of
the mobility showed that a variety of different characteristics
can be explained with the theory.

FIG. 3. �Color online� Total mobility �solid lines�, and its coher-
ent �dotted lines� and incoherent �dashed lines� contributions along
a direction of a model crystal as specified in the text. The electron-
phonon coupling is varied as indicated. Dots give the T=0 values.
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